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INTRODUCTION

The "demo enclosure" is a small box meant to simulate the basic characteristics of an
equipment enclosure, but without the complexity of an actual enclosure. Extensive experimental
measurements have been made on the enclosure and are summarized in a companion report entitled
"Experimental Measurements of the Demo Enclosure". In this report, we will summarize the
associated numerical modeling of the enclosure's structural vibration and radiated sound field using
finite and boundary element techniques.

One of the main goals of the report is to establish useful modeling guidelines for finite and
boundary element analyses of enclosures. Producing accurate predictions is of primary importance,
but ease of implementation is also important. We will try to demonstrate that it is not always
beneficial to try to duplicate all the enclosure's structural complexity in the finite and boundary
element models because errors inevitably occur and it is frequently difficult to adjust the models
without considerable effort. For example, it is relatively simple to produce accurate models for
shelves and enclosures separately, but their interconnections are much more difficult to represent.
When the models are combined into much larger finite element models, it becomes difficult and
time consuming to optimize the modeling of the interconnections. Our research was thus directed
towards developing simple methods for adjusting the individual models and combining them
together after an initial finite element analysis.

A. Finite Element Modeling

Before beginning the analysis, we will first discuss the basic procedures used to create the
finite and boundary element models. To construct a finite element model, a geometric
representation of the structure is created and then meshed. The user has considerable latitude in
dividing the structure into geometrical entities and meshing them. On one extreme, the structural
geometry can be represented in terms of a few compound shapes, and then "automeshed" within a
finite element pre-processor. On the other extreme, the geometry can be broken down into many
small pieces and meshed individually using "mapped meshes". While it is certainly easier to
generate meshes using automeshing, it is difficult to produce a mesh with uniform density. As an
example, the left side of Figure 1 shows a portion of the demo enclosure that is represented as a
single geometric entity. The white dots along the edges are mesh seeds specified by the user to
control the mesh density. Performing the automesh command then yields the tetrahedral (linear 4-
noded) solid mesh of the enclosure shown on the right side of the figure. Although the mesh is
reasonable, the elements along the edges and near the comers are more refined and not uniformly
spaced. Automeshing procedures thus lead to larger models and increased computational expense,
but are relatively easy to generate. This is especially true as the mesh resolution increases and
more elements are required along the edges. To demonstrate, Table 1 lists the first six resonance
frequencies for a series of linear tetrahedral meshes with different densities created using
automeshing procedures. The results show that the predictions for the resonance frequencies
converge very slowly as a function of mesh density.

Better convergence and more uniform meshes can be obtained by dividing the geometry
into smaller pieces and meshing them individually. The left side of Figure 2 shows the same
geometry when it is divided up into smaller pieces and the right side shows the resulting mesh.
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Even though the full finite element model now only has 77,390 nodes and 18948 elements, it yields
predictions of 55.86, 61.52, 74.19, 76.04, 80.59, and 82.90 Hz for the first six resonance
frequencies, which are far more accurate than those of even the finest tetrahedral mesh (as
compared to predictions of 55.41, 61.17, 73.72, 75.45, 80.35, and 82.38 from a more refined
"uniform" mesh with 172,210 nodes and 43,008 elements). This example might seem somewhat
misleading because both shell and hexahedral elements were used in creating the mapped meshes,
considerably reducing the total degrees of freedom. However, it would be impossible to combine
these two element types together without breaking the geometry down into smaller pieces before it
is meshed, thus excluding automeshing.

B. Boundary Element Modeling

Once the finite element analysis has been performed, the fluid-coupling and radiated
acoustic field can be predicted using the boundary element method. The first step in the process is
to generate an acoustic element mesh corresponding to the finite element mesh. The nodes for the
acoustic mesh must match those in the finite element model so that the mode shapes from the
structural analysis can be input to the acoustic analysis. The acoustic mesh represents only the
boundary surface of the structure in contact with the fluid.

In general, a boundary element model of an enclosure would include both internal and
external surfaces because both are contact with air. However, it would be difficult to generate a
boundary element model of the interior acoustic field with correct representations for the shelf and
the electrical components and the extra acoustic elements can increase the computation times
considerably. Thus, it is desirable to simplify the boundary element analysis and only include the
exterior acoustic field or a simplified representation of the interior. This is also beneficial because
it would be very time consuming to generate separate boundary element models for every electrical
equipment configuration. As an example of a simplified model of the interior, we might eliminate
the middle and bottom shelf from the analysis and just assume the fluid is free to flow anywhere
inside the enclosure, as illustrated in Figure 3. This decreases the number of acoustic elements in
the model by approximately 40 %. In theory, this will reduce the analysis time by 78 % because
the time required to perform the matrix inversions is proportional to the number of elements cubed.

As an initial step to try to verify the simplified acoustic model, we will demonstrate that the
surface vibrations are relatively insensitive to whether or not the internal acoustic field is
represented in the model. Intuitively, we expect this to be true since mode shapes and resonance
frequencies typically do not shift significantly due to fluid-coupling for in-air applications because
the overall stiffness and mass of the air is small in comparison to the structural stiffness and mass.
We will perform the test on the configuration without the interior shelf since its inclusion will
generally increase the overall structural stiffness of the enclosure. Figure 4 shows the integrated
squared normal velocity over the enclosure walls for a drive point located near a corner of one of
the sides both with and without the interior acoustic field included in the analysis. The main
differences occur between 75 and 100 Hz, where the fundamental interior acoustic resonance is
located. Similar results are shown in Figure 5 for the acoustic power output. Even though the
interior acoustic field only effects the surface vibrations near the fundamental acoustic resonance,
we will include it in the subsequent analyses, but without the interaction with the middle and
bottom shelves.
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C. Shelf Alone

Our basic strategy for modeling the full enclosure will be to first generate models of the
shelf and enclosure separately, validate them, and then combine them together to create the full
model. We will begin with the shelf alone, the finite element model for which is shown in Figure
6. The model is composed of three sets of elements, one modeling the thin plating (grey in the
figure), one modeling the angle brackets (light blue), and an overlapping set of elements enforcing
continuity of rotations between the plating and angle brackets (gold). To properly account for the
structural mass, the overlapping elements have the same Young's modulus as the plate, but
negligible mass. All of the pieces are made of aluminum, and the dimensions are given in the
companion report.

To validate the model, we will compare the finite element predictions to the experimental
measurements of the shelf sitting on "bubble-wrap". Figure 7 shows a comparison of the first four
modes from the experimental measurements and numerical predictions. Clearly, the mode shapes
are well represented in the finite element model, but the resonance frequencies are somewhat too
high, indicating the finite element model is too stiff. Similarly, Figure 8 shows a comparison of the
integrated normal velocity over the surface of the plate for the original finite element model and the
experimental data, which also indicates that the model is too stiff. The explanation for the
discrepancy is fairly simple. In the model, each set of nodes at the interface between the shelf and
the brackets has been coalesced, whereas, in reality, the angle brackets are not welded to each other
and are only connected to the shelf plating at approximately two-inch intervals.

Rather than trying to modify the finite element model to make it more closely correspond to
the experimental data, we can manually adjust the resonance frequencies and damping loss factors
to make them match better. This is possible because the modal stiffness and damping only enter
the analysis through the resonance frequencies and damping loss factors, which can be adjusted
manually after the initial finite element computations. The analysis assumes a one-to-one match
between the numerical and experimental mode shapes. After adjusting the modal frequencies and
loss factors, the numerical predictions and experimental measurements agree very closely, as
shown in Figure 9. The remaining relatively small differences are presumably due to the rigid body
modes of the shelf, which occur at nearly zero frequency in the numerical model. While the results
are excellent for this simple example, the process will obviously become more difficult for more
complicated structures and finite element models. Nonetheless, we will demonstrate it can yield
excellent results for models of the size of the demonstration enclosure.

D. Enclosure without the Shelf

The second step is to construct a finite element model of the enclosure without the shelf.
Mapped meshing algorithms were used to construct the finite element models even though the
process is somewhat tedious and time consuming. However, once the geometry has been created, it
is relatively simple to refine the mesh by changing the mesh seeds along the edges, making it
possible to perform convergence tests. Figure 10 shows a comparison of the integrated squared
normal velocity for two mesh densities for a drive point on one of the sides. The results are nearly
identical up to 500 Hz except for a slight downward shift in the resonance frequencies for the more
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refined mesh. Thus, because the results are nearly identical, we will use the less refined mesh for
the subsequent analyses.

Once the structural model has been validated, a second convergence check is performed for
the acoustic radiation predictions. Figure 11 shows the two acoustic meshes used in the analysis
with 832 and 1980 elements. In the figure, each color represents a different acoustic element.
Recalling that the computation times for the acoustic calculations are approximately proportional to
the number of acoustic elements cubed, we expect the finer mesh to require 13.5 times longer per
frequency. In actuality, the computation times for the denser acoustic mesh are only 3.2 times
longer, indicating that, while the matrix inverse accounts far a large part of the time, other
calculations are also significant contributors. This is especially true for the coarser acoustic model,
because the time required for the matrix inverse is much smaller. Convergence analyses were
performed both with and without internal acoustic fields, and Figure 12 shows a comparison of the
radiated acoustic power output for the case with the internal field included. Since the predictions
agree very closely, we will use the coarser acoustic mesh with 832 elements in the subsequent
analyses.

To further validate the model, we will compare the predictions to measured mode shapes
and transfer function data. Figure 13 shows a comparison of the first four experimental and
numerical mode shapes and resonance frequencies for the configuration without the shelf. As for
the shelf alone, the finite element models are somewhat too stiff, presumably due to the 2-inch
spacing for the screws in the actual enclosure. Figure 14 shows a comparison of the integrated
squared normal velocity for the experimental measurements and numerical predictions. The drive
point location and direction are illustrated in the overlaid picture of the finite element mesh.

We can again alter the finite element model to make it correspond more closely to the
experimental measurements by manually adjusting the resonance frequencies and damping loss
factors. For a model of this complexity, a MAC (modal assurance criteria) analysis is very useful
in helping to identify a one-to-one correspondence between the experimental and numerical mode
shapes. Figure 15 lists sample output for the MAC for the enclosure without the shelf. The first
column of numbers lists the experimental modes and the last eight columns list the four closest
matching numerical modes and their associated MAC levels. The first six experimental modes are
essentially rigid body and are not duplicated in the numerical model. In general, MAC levels above
0.8 are desirable, but even levels in the range of 0.5 can indicate a close match if the accelerometer
density is somewhat coarse and the levels for the secondary modes are low. Figure 16 shows the
revised comparison for the integrated squared normal velocity after the resonance frequencies and
loss factors are adjusted in the numerical model. The correspondence is excellent below 300 Hz
and is acceptable between 300 and 400 Hz. The main discrepancy in the lower frequency range
occurs near the fundamental internal acoustic resonance at approximately 75 Hz, which is either
very heavily damped or missing in the experimental data.

Although no pressure data was taken for the enclosure without the shelf, we can still obtain
some level of validation by comparing the fully numerical predictions to those using the measured
vibration data as input to the acoustic boundary element program. Figure 17 shows the predicted
acoustic power output as a function of frequency for the two cases. The two predictions agree
reasonably well, although the power output predictions using the experimental surface vibrations as
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input are consistently high, especially in the higher frequency range. This is expected because the
experimental measurement grid is too coarse to properly resolve the phase variations across the
acoustic elements. Destructive interference effects are then lost and the power output predictions
are consistently too high. Our basic conclusion from the individual component analysis is that the
finite element models are somewhat too stiff, but that their resonance frequencies and damping loss
factors can be adjusted to yield excellent comparisons to the experimental measurements.

E. Enclosure with the Shelf Resting on Sorbothane

Of the configurations tested experimentally, the shelf resting on sorbothane (simulating an
isolation mount) is the most difficult to model using finite elements. Even with good specifications
for the material properties and dimensions, the sorbothane is difficult to model because it is not tied
to the shelf or the enclosure except through gravity, the effects of which are typically neglected in
our finite element models. The actual connection properties could conceivably be determined
experimentally and represented in the finite element model using bar or beam elements, but it
would be expensive and time consuming to design and build the required special purpose
apparatus. Rather than trying to modify our standard procedure, we will simply try to model the
material properties and dimensions as well as possible in a model combining the shelf and the
enclosure. The other possibility is to generate separate models of the components, and then
combine them to create a complete model. This speeds up the analysis considerably, and allows the
connection properties to be optimized. We will apply both methods to the problem to determine
which yields the most accurate and efficient numerical solution.

To start, we will try to combine the two components into a larger finite element model, with
correct representations for the sorbothane's dimensions and material properties. Figure 18 shows
one quarter of the resulting finite element model along with a close-up of the sorbothane
connection, which is shown as dark blue. Two 20-node brick elements through the thickness are
used to represent the sorbothane, which should be more than sufficient to correctly model the
stresses and strains. No other connections between the shelf and the enclosure exist in the model.
Figure 19 shows a comparison of the experimental measurements and numerical predictions of the
integrated squared normal velocity over the enclosure walls for a drive point on the shelf.
Obviously, the representation of the sorbothane in the finite element model is much too soft
because very little energy is transferred from the shelf to the enclosure. Figure 20 shows a similar
comparison after the resonance frequencies and loss factors were manually adjusted to make them
match the measurements. Although the resonance frequencies now line up better, the connection is
still much too soft and the vibrations of the enclosure are much too low.

The alternative is to connect the shelf to the enclosure through stiffnesses and then adjust
their magnitude to correctly represent the level of coupling. As a first step, the shelf and enclosure
finite element models were combined together and the structural analysis was rerun. This helps to
ensure that none of the element and node numbers overlap for the two models. The resonance
frequencies should be identical to those for the separate models. To connect the components, four
sets of nodes at the corners of the shelf and inside of enclosure are connected with stiffnesses. The
analyst simply specifies the four sets of nodes along with the stiffness in each direction. Figure 21
shows a comparison of the experimental measurements and numerical predictions of the integrated
squared normal velocity over the enclosure walls for a drive point on the shelf. Several different
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stiffnesses were tested to try to find the best match to the experimental measurements. Although
there are still some differences in the vibration spectra, a value of Kz=lxl10A6 gives a reasonably
good match to the measurements. Using the optimized stiffnesses, Figure 22 shows a comparison
of the experimental measurements and numerical predictions of the acoustic power output for a
drive point on the shelf. We recall from the previous report summarizing the experimental
measurements that two sets of tests were performed; one to measure the surface vibrations and one
to measure the radiated pressures. For the pressure measurements, two shakers were added to the
shelf, resulting in downward shifts in the resonance frequencies for some of the modes. Thus,
some of the discrepancies in the power output comparison, and specifically the mode at
approximately 140 Hz, are due to the addition of the shakers rather than the fidelity of the finite or
boundary element models. The results show that the power output predictions are much more
accurate when the two models are connected with discrete stiffnesses. However, in a more general
situation, it is unlikely that the desired vibration spectrum will be specified in advance, so that the
process of optimizing the connection stiffnesses becomes much more difficult. Nonetheless, the
analysis is useful because numerous configurations can be tested very efficiently.

F. Enclosure with the Shelf Hinged to the Enclosure

For the second configuration, the shelf is attached to the enclosure using hinges. We will
again model the connections directly using added stiffnesses. When the connections are modeled
directly, an extra row of hexahedral elements is added around the periphery of the plate and one of
the outer rows of nodes is tied to the enclosure plating. Because the hexahedral elements only have
displacement degrees of freedom, the shelf and plate are free to rotate independently, simulating a
hinged connection. Figure 23 shows a comparison of the experimental measurements and
numerical predictions of the integrated squared normal velocity over the enclosure walls for a drive
point on the shelf. Because both the models of the shelf and the enclosure are too stiff, it is not
surprising that the combined model is also too stiff. Figure 24 shows a similar comparison when
the resonance frequencies and damping loss factors are adjusted for the combined finite element
model. Although the comparison improves, the vibration levels for the numerical model are still
too low, presumably because our technique does not allow the admittance levels to be adjusted.

When the connections are modeled using added stiffnesses, the main difficulties are in
identifying the relevant nodes and directions and optimizing their values. For the hinged
connection, stiffnesses were added in all three directions at approximately two-inch spacing around
the periphery of the shelf. The values along the hinge were taken to be different than that in the
plane in which it rotates. To help in generating the connections, layers were used in FEMAP (a
finite element pre-processor) to isolate only the components of interest, making the process far less
susceptible to user error. Seventeen test cases were run to identify the optimum values for the
stiffnesses. Despite testing many configurations with different values in the two directions,
specifying the same value for the stiffness in all three directions yields the best results. For the
optimized configuration, Figure 25 shows the comparison between the experimental measurements
and numerical predictions of the integrated squared normal velocity over the enclosure walls for a
drive point on the shelf. Overall, the two sets of predictions compare reasonably well, with the
major differences occurring in the frequency range between 130 and 150 Hz. The missing peaks
are actually present in the combined model, but are not excited to nearly the same level. The
screws used to connect the shelf to the walls are steel and have 1/4" diameter, and thus we would
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expect their stiffness to be approximately equal to A E / L = 6.3 x 106 Newtons / L. The value for L
depends on the spacing between the head of the screw and the nut, and will be a small fraction of a
meter. Thus, the optimized value for the stiffnesses is somewhat lower than that of the screws.

For the power output predictions, the acoustic model includes both interior and exterior
acoustic fields, but does not include the effects of the shelf. Figures 26-28 show comparisons of
the radiated acoustic power level between the experimental measurements and the numerical
predictions for the various prediction strategies. As for the previous configurations, the differences
between the predictions and the measurements are largely due to differences in the vibration
profiles rather than the boundary element computations. The main challenge is thus to correctly
model the structural vibrations in the finite element analysis.

G. Enclosure with the Shelf Clamped to the Enclosure

In the final configuration, the shelf is clamped to the enclosure walls. For the combined
model with direct connections, the previous model used for the hinged configuration was modified
so that two rows of nodes are tied to the enclosure plating rather than just one. This allows
moments to be transferred between the components. Figures 29 and 30 show comparisons of
experimental measurements and numerical predictions of the integrated squared normal velocity
over the enclosure walls for a drive point on the shelf before and after the frequencies and loss
factors are adjusted. In this case, the comparison is relatively good even without adjusting the
frequencies and it is very good after they are adjusted. As for the hinged plate, the vibration levels
for the numerical model are somewhat low, presumably because our technique does not allow the
admittance levels to be adjusted.

When the connections are modeled using added stiffnesses, two sets of nodes were tied
together with stiffness to simulate the locations of the screws. In this case, the stiffnesses in the
three directions were taken to be equivalent and eight configurations were tested to determine the
optimum values. For the optimized configuration, Figure 31 shows the comparison between the
experimental measurements and numerical predictions of the integrated squared normal velocity
over the enclosure walls for a drive point on the shelf. Overall, the two sets of predictions compare
very well, with major differences only beginning to occur above 300 Hz.

For the power output predictions, the acoustic model again includes both interior and
exterior acoustic fields, but does not include the effects of the shelf. Figures 32-34 show
comparisons of the radiated acoustic power level between the experimental measurements and the
numerical predictions for the various prediction strategies. The agreement is excellent when the
connections are modeled with added stiffnesses. As for the previous configurations, the differences
between the predictions and the measurements are largely due to differences in the vibration
profiles rather than the boundary element computations.

CONCLUSIONS

Several conclusions can be drawn from our numerical modeling of the demonstration
enclosure. First and foremost, the strategies for combining the components worked better for the
more rigid connections than they did for the softer configurations. This may be a potential
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weakness in the future because it is desirable to isolate the shelves as much as possible from the
enclosure to reduce sound radiation. Our second conclusion is that the simple method of adjusting
the frequencies and damping loss factors in the numerical models can be very effective, provided
the requisite experimental data is available. Minor discrepancies occur in the predictions because
the admittance levels are not adjusted, but the differences are relatively small for the problems
examined. Third, the technique of analyzing the components separately and combining them
together using adding stiffnesses performed as well or better than trying to model the connections
directly. The technique is also well-suited to optimization problems because numerous cases can
be analyzed much more quickly than the more direct technique. However, because experimental
measurements were used to tune the values for the stiffnesses, it is doubtful that the predictions
would be nearly as accurate without the tuning process. Finally, the differences between the
predictions and the measurements are largely due to differences in the finite element predictions of
the vibration profiles rather than the boundary element computations. The main challenge is thus to
correctly model the structural vibrations in the finite element analysis.

FUTURE WORK

The demo enclosure has provided us with useful general recommendations, but it has not
given us much opportunity to test specific practical configurations. This is especially important
because the results have shown that it is beneficial to mount the shelves as softly as possible, but
the previous practical enclosure designs have used welded connections exclusively. Methods for
experimentally testing the connections and modeling them in the finite element analyses would also
be very helpful.
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